Multi-touch Interface for Character Motion Control Using Model-Based Approach

Masaki Oshita
Kyushu Institute of Technology
lizuka, Fukuoka, Japan
Email: oshita@ces.kyutech.ac.jp

Abstract—In this paper, we propose a new method for synthesized based on touch inputs. Oshita [2] applied this
interactive motion control with a multi-touch interface. A user approach for a multi-touch interface for motion control.
of our system can touch and drag character's body parts 0 owever, because different example data sets are required
control its motion. The character’s full body motion is driven by f h kind of . hi h . |
our interactive motion control model based on the movement 'Of €ac ind of actions, this apprf)ac reql’!'res a large
of a few body parts which are directly manipulated by the =~ number of examples and a mechanism to switch data sets
user via the multi-touch interface. We propose a method for —automatically. Moreover, it is difficult to execute new types
determining 3-dimensional positions of controlled body parts of actions whose example poses are not provided in advance.
from 2-dimensional touch inputs based on the character’s In this paper, we propose a new method for interactive

local coordinates and drag speed. We introduce a point- - . . .
based pose representation which consists of the positions or motion control with a multi-touch interface. A user of our

orientations of a small number of primary body parts. Based ~ System can touch and drag a character’s body parts to control
on the representation, we develop a motion control model that its motion. Unlike the data-based approach (the statistics-
includes modules for tracking, balance, inter-body interaction,_ based IK) discussed above, we take a model-based approach.
relaxing and self-collision avoidance. The character's pose IS Thg character’s full body motion is driven by our interactive
reconstructed from the point-based pose representation. We .
present our experimental results to show that our framework motion Controll model t?ased on the movement of a feyv
can realize various natural-looking motions. body parts which are directly manipulated by the user via
the multi-touch interface. Our motion control model can
perform various motions without preparing any example
poses (Figure 1).
Our method for determining 3-dimensional positions of
controlled body parts from 2-dimensional touch inputs is
Tablet computers that support multi-touch inputs havebased on the character’s local coordinates and drag speed.
recently become commonplace. Although many applicationgVe introduced a point-based pose representation which
control character motion in the virtual environment, mostconsists of the positions or orientations of a small num-
use virtual buttons or stroke gestures for selecting actionsser of primary body parts (pelvis, hand, foot, trunk and
Multi-touch input is a simple substitute for gamepads orhead). Based on this representation, we developed a motion
keyboards. The strengths of multi-touch are underutilizedcontrol model that includes modules for tracking, balance,
Using multi-touch, users should be able to control characteinter-body interaction, relaxing and self-collision avoidance.
motion freely and intuitively rather than simply executing The character’'s pose is reconstructed from the point-based
predefined actions. pose representation. We present our experimental results to
In theory, using inverse kinematics (IK), a user can changahow that our framework can realize various natural-looking
a character’'s pose by dragging its body part. However, thisnotions.
kind of interface is not suitable for controlling a character's Even though our method can accept a number of multi-
motion in interactive applications, for two primary reasons.touch inputs, in our experience it is difficult for a user to
First, because multi-touch inputs on the screen are Z2eontrol multiple touches simultaneously. With our method,
dimensional, 3-dimensional position and orientation of bodya user needs to control the movement of only one or a few
parts cannot be easily controlled. Second, since multipl@rimary body parts to perform an action. The motion control
body parts must be moved in a coordinated way to realizenodel then generates the full body motion accordingly.
natural-looking motion, a user must control multiple body The remainder of this paper is organized as follows.
parts, which is very difficult. For example, to execute aSection Il reviews related work. Section Ill shows the system
punch motion, in addition to the hand, the pelvis and trunkoverview. Sections IV, V and VI explain our methods for
should also be moved. pose representation, interpretation of multi-touch inputs, and
A statistics-based model for IK (style-based IK [1]) can the motion control model, respectively. Section VII presents
be a solution for these problems. Using a large numbethe experimental results and discussion. Finally, Section VIl
of example poses, natural-looking pose and motion can beoncludes this paper.

Keywordsmotion control; multi-touch interface; computer
animation; character animation;

I. INTRODUCTION

Figure 1. Examples of interactive motion control with multi-touch interface. The red circles represent touch inputs.

Il. RELATED WORK However, the type of motion is limited to walking or
A. Point-based Pose Representation rpnning. T_hrone et al. [10] introduced gesture-base.d mo-
. L . _tion selection. Based on gestures drawn along a trajectory,
We used a pomt-based pose representation in th',s,retheir system inserts predefined motions such as a jump or
search. Representing a pose_by using points Is an efﬁmeth p. Oshita [11] proposed a stroke-based motion selection
way to handle character motion. Jakob_sen [3] represgr_n chnique that chooses an appropriate action according to
a chgractgr as a set of connected .part|c|es for- an efhme%e initial and terminal points of a single stroke drawn on
physn_:s simulation. However, h('a .d'd no_t f:on5|der reCONYhe screen. With these systems [10][11], users can simply
structing a full body POse. P(_)pan/land V\./'tk.m [.4] recon- select actions but the postures and speed of the actions are
structed full body motion using an optimization PrOCESS.fiyed and cannot be controlled. Igarashi et al. [12] proposed

These approaches are not applicable to our research. - goa4ia) keyframing animation technique. This approach

Sllr.mlar pose r_epresgntaﬂons 'to our method which use th'(z*nables changing a character’'s pose continuously based on
positions and orientations of primary body parts have beeg o o\ \rqor position. To use this technique, key postures must

used in previous research [S][6]. The difference betweer),, placed at appropriate positions depending on a specific

these studies and our method is that they used their rePrettion

sentation fo_r encoding existing motions for mot_ion editing Some systems allow a user to specify a number of trajecto-
or retargetting. Kulpa et al. [5] used a numerical IK for \oq ang constraints for motion creation [13] and deformation
limbs. Neff et al. [6] included the center of mass position 141 However, with these systems, the user is expected to
in the pose representation and computed the ankle jointgioitize the inputs. Our methods uses multiple inputs and
accordingly during pose reconstruction. We Q|dn t take Sucrbontrol modules and prioritizes them automatically.
approaches to avoid redundancy and achieve robust and
efficient method. C. Motion Control Model

There are various approaches for motion control and
synthesis based on user input. A combination of physics

There are several existing multi-touch interfaces for in-simulation and physics-based controllers [15][16] is one
teractive motion control. Krause et al. [7] applied conven-approach. A controller determines joint torques based on
tional IK to a character model based on multi-touch inputsa target pose, balancing, etc. and the physics simulation
for animation. Kip and Nguyen [8] proposed a system togenerates physically valid motions. However, designing a
control one arm and hand of a character using a multistable controller is difficult and different controllers must be
touch interface by changing several parameters to blend araesigned for each kind of action.
and hand postures. Oshita [2] applied a statistics-based IK Space-time optimization is another approach [4][17]. It
(style-based IK [1]). Although this approach successfullysynthesizes a continuous motion based on given constraints
generates natural-looking full-body pose and motion baseduch as footsteps and timings so that the generated motion
on multi-touch inputs, as explained in Section 1, it requiresminimizes an objective function that evaluates its physical
a large number of examples and a mechanism to switch datzalidity. However, this approach generate a motion sequence
sets automatically. Moreover, it is difficult to execute newand requires computational time. Therefore, it is difficult to
types of actions whose example poses are not provided. Capply it for interactive motion control.
the other hand, our research used a model-based approachPrevious researches has applied optimization (Quadratic
and our motion control model makes it possible to performProgramming) for computing the pose of the next frame
various motions without preparing any example poses. instead of a motion sequence [18][19] to realize interactive

There are many methods for controlling a character'smotion generation. These controllers are designed for au-
motion by using a single point or trajectory. Generatingtonomous control instead of user control and also require
locomotion along with a given trajectory is common [9]. computational time.

B. Motion Control Interface

(Multi-touch inputs) (Character Model) Conventional Our Point-based
| —

Pose Representation Pose Representation
(Constraints)) (TargelPosition)

=

Figure 3. Pose representation. A blue rectangle represents a position and

Figure 2. Data flow in the proposed framework. a read circle represents a rotation (orientation).

. Inbconérary to tlrese approachl?es, we dgvelopsd a kmema{he rotation. In this papefg| represents rotational angle and
ics based controller. Our controller considers physics in par;nuq represents scaling of the rotational angle.
but directly changes the positions and orientations of body

parts rather than using physics simulation or optimizationA. Pose Reconstruction
Our controller is designed to move the character’s full body The character's output posX is represented by the

naturally based on the user's inputs. position and orientation of the pelvis and rotations for
all joints asX = {Ppevis; Apetvis; di(i = 1..n)} where
n is the number of joints. Our method reconstructs this
The structure of our framework is shown in Figure 2. output pose from our intermediate pose representad®ica
We use an intermediate point-based pose representation foebpelvi57pr_lzanda Pl_hands Pr_foots PL_foots Qtrunk, Qhead }-
motion control (controlled pose). Multi-touch inputs from Figure 3 shows the difference between the conventional
the user are interpreted and represented as constraints in thgse representation and our point-based pose representation.
same pose representation. The pose reconstruction follows 4 steps:
In addition to constraints for controlling the character's 1) pose Reconstruction for Pelvis Position, Pelvis Orien-
pose, when the character is moved over a certain distancgation and Back JointsThe pelvis position of the interme-
a moving motion (step) is executed. In this case, the targediate representation is simply used for the pelvis position
position of the moving motion is sent to the motion controlp ;...
module. Pelvis orientation and back joint rotations are computed
The skeletal structure of the character is given to the sysfrom trunk orientationq, ... The number of back joints
tem in advance. It includes the information on the shape angepends on the skeleton model. In general, the back joint
weight of the body parts. Shape information is necessary fofotations can be computed from the total rotation of the back
self-collision avoidance, and weight information is necessaryoints by distributing the total rotation to each back joint in
for balance control. specific ratios [20]. Our method determines pelvis orienta-
The user can also control the camera. A swipe can contralon in addition to the back joint rotations. We divide the
the camera direction and pinch-in and -out can control zoontrunk orientation into horizontal rotatiofy,,nx_n(1DOF)

Il. SYSTEM OVERVIEW

(the distance from the camera to the character). and front-back and right-left rotatiorg,.._.(2DOF). The
horizontal rotation is assigned to pelvis orientation. The
IV. POINT-BASED POSE REPRESENTATION other rotations are distributed into pelvis orientation and

Our intermediate point-based pose representaBom- back joints with a specific weight,evis_back_ratio-
cludes pelvis positionp,evis, hand positionsp, nand,
Pi_hand» foot pOSitionSpT_foot1 Pi_foot> trunk orientation Qtrunk = Atrunk_vAtrunk_h (1)
durunk @nd head orientatioqy,..q; 5 positions and 2 orien-
tations. All positions and orientations are represented in the 9pelvis = ((Wpetvis_back_ratio)Qtrunk_v)Qtrunk_n (2)
absolute (world) coordinates.

In general, there are several ways to represent a rotation
such as quaternion, axis-angdes 3 matrix and Euler angles. wherewq represents a scaling of rotation angle.
Although any of these can be used with our method, in In our implementation, we US&pcivis_back_ratio = 0.5.
the following explanation, we treat them &s< 3 matrices If the skeleton model consists of more than one back joint,
such that the product of two rotatiorgq, equates to the the total back rotatiom;..) can be further distributed to
combination of two rotationsy~! represents the inverse of each back joint with specific weights [20].

Qi(back) = (1 - wpelvis_back_ratio)qtrunk_v (3)

Figure 4. Analytical inverse kinematics for a limb.

2) Pose Reconstruction for Neck Joint§he neck joint
rotations are computed from trunk and head orientations.

1 Figure 5. Examples of swivel angles.
Qi(neck) = qhead(Qtrunk) (4)

3) Pose Reconstruction for Limb Jointafter the pelvis
and trunk states are determined, limb joints rotations ar&'©t Necessary to prepare separate sets of examples for each
computed from the end-effector (hand or foot) position. intype of action, unlike a statistics-based posture synthesis
the followings explanation, we take the case of an arm t 1]i2]-

make the explanation easier, although the same method is F19Uré 5 shows poses that are generated from the exam-
applied to legs too ples. The colors represent the weights computed from the

In general, as shown in Figure 4, an analytical IK [21] hand position. Note that each example has a swivel angle

determines the rotation of limb joints (3DOF shoulder joint 2nd NOt & pose. _ .
Qshoulder, 1DOF €lbow jointqese, and 3DOF wrist joint 4) Pose Reconstruction for Hand and Foot Join&ince

Qurist) based on the relative position and orientation of theVe do not use hand and foot orientations, wrist and ankle ro-

end-effector from the shoulder,., q.. and swivel angle of tationspurist Pankie are _determined automatic_ally. Unlegs

the elbows, ;0. Since we determined the wrist angle joint f[he charaf:ter IS perfor_mmg_ a gesfture or_holdlng an Ob_Je_Ct
rotations differently as explained in the next subsection, if"! the environment, neither is considered in our system, it is
we focus on shoulder (3DOF) and elbow (1DOF) joims,natural to keep _the wrist and_fqot rotations in the rest pose.
their rotations can be determined based on hand positio-rqhemfore’ we simply set the joint rotation to zero after limb

Pee (3DOF) and swivel angle, .., (LDOF). jointrzotation is ((jjetgrmined. ol _ _ A
How swivel angle is determined is important. If analytical When an end-effector (typically fooy) is contacting the

IK is used for changing an existing pose, the swivel angle_ground, the foot must be kept'h_orizontal. Also, when the foot
of the original pose can be retained. Because of the nedd near the ground, the ankle joint must be flexed or extended

to generate arbitrary poses in our case, such an approacht%prevent the foot from penetrating into the ground. Similar
not applicable. It is known that the swivel angle depends ojo trunk orientation control, ankle rotation is set, when the
the end-effector position [22]. Therefore, we determined thd®Ct IS néar or on the ground.

swivel angle from the hand position based on examples that V. INTERPRETATION OFMULTI-TOUCH INPUTS

are prepared 'g advan(;e. lized relative hand . In this section, we explain how to interpret multi-touch
We prepared sets of normalized relative hand positiong, s 1o determine constraints in the point-based pose

and swivel angles as examples. Given a hand position, We, o esentation form. A user can touch and drag the pelvis,
blend nearby samples to determine swivel angle. We uSg g oot trunk and head of the character. Since we use
Radial Basis Fun'ct|on (RBF) to cqmpute the weight of e""Cr}nulti—touch inputs, multiple body parts can be touched and
example depending on hand position. dragged at the same time. In this paper, we did not take
inputs on the middle of limbs (e.g. upper arm, forearm,
Selbow = Z fi(Pee)si (3) elbow, etc.); limbs can be controlled only by moving the end-

() — . A2Y (s o ' effectors (hand and foot). Although a person has 10 fingers,
filp) = exp(=(Ipi = Pecl/ri)7) (if [Pi = Peel <73) (6) from our experience, we can control at most two or three
where f;(p) is the RBF for each examplép;,s;,r;}. In touches at the same time. Therefore, the limited number
our implementation, we use about 10 examples for each limbf controllable body parts in our method is considered

which are tuned manually. Alternatively, it is possible to usereasonable.

motion capture data to create more accurate samples. Our method treats each touch input as the spatial trans-
Although we used example data here, because thedation of the touched body part. The biggest challenge is

examples are common for all types of poses and actions, it isow to determine 3-dimensional positions of controlled body

A. Translation of Pelvis, Hand and Foot

Based on the above approach, we determined the target
position of pelvis, hand or foot as follows:

1) Translation on a Hyper PlaneBased on the first
assumption above, when a body part (pelvis, hand or foot)
is touched and dragged on the screen, it is moved on either
the XY, ZX or YZ hyper plane which is defined by the local
coordinates of the character as shown in Figure 6.

X, Y and Z axes are determined based on pelvis ori-
entation. Y axis is always (0, 1, 0), while X and Z axes
are determined from the horizontal pelvis orientation. Then,
among these axes, the one whose inner product with the
Figure 6. Touch interpretation. camera vector (camera directiod).qmerq iS the largest is
chosen as the normal vector that defines the hyper plane. The
hyper plane is defined by the normal veatoand the current

position of the controlled body pafi.., ..: as follows
parts. When a user touches and drags a body part on the

2-dimensional screen, the touched position on the screen n(p—p)=0 7)

. current
represents a line in the 3-dimensional scene. There is no _ o
Simp|e way to determine a unique point on the line. The touch line where the controlled bOdy part exist Is

We solved this problem by introducing several assump—defmed as follows

tions. First, when a person performs motions, the pelvis,

hand and foot are generally moved in either front-back or P = tdiouch + Peamera (®)
rlght-left direction relative to the person. For example, forwheredtouch is the normalized vector from the camera to
punch and kick motions, the body parts are moved in thehe touch point ang.,mer. is the camera position. From
front-back direction. For a waving hand and arm extendingequations (7) and (8), the target position of the controlled
motion, the body parts are moved in the right-left direction.pody part on the hyper plane is computed.

Although some complex motions include movements in 2) Translation in the Perpendicular DirectionBased on
combinations of both front-back and left-right directions, inthe second assumption above, position is adjusted in the
many cases the body parts are moved on one plane. Werection perpendicular to the screen. This adjustment is
determined in which plane the touched body part shoulgypplied to end-effectors (hand and foot) but not to the pelvis.
be moved depending on the character's orientation and th@/hen the speed of a dragged end-effector is faster than the
camera direction. threshold, its position is adjusted in proportion to speed.

A second assumption is to move the selected body part There are two directions for the perpendicular vector. The
(hand or foot) in a perpendicular direction to the screenbody part should be moved forward from the character. The
When a hand or foot is moved away from the trunk onmoving direction vectod ;.44 is determined as follows.
the screen, there is not much freedom of movement in the

perpendicular direction, because arm and leg lengths are diouch (if ds azis - deouch > cos45°)
limited. However, yvhen the hand or foot is moveq towarq dorward = —diouen (if dz:awis - dyoyen < c0s45°)
or near the trunk, it may be moved in the perpendicular di- 0 (otherwise)

rection. When the hand or foot is moved toward the camera, 9

it is likely that they are dynamic motions such as a punchwhere d., ... is the Z axis of the character's pelvis.

or kick which would require quick movement. Therefore, Although it is possible to apply this translation on any
the resultant translation in the perpendicular direction iscamera direction in theory, throughout our tests, we found
based on the speed of the body part being controlled byhat it does not work well when the body parts are moved
the user. Although this may not be the case all of the timeon the YZ plane (when the camera is on the side of the
we consider that this is a reasonable assumption. character). Therefore, we limit this control when the angle

In addition to these assumptions, self-collision avoidancdetweend, a.is anddioycn is less thar5.
is considered. For example, when a hand is moved toward The position of the end-effector is adjusted in the direction
the trunk on a plane that crosses the trunk, the arm caff dforwara Dased on the velocity of the end-effector
penetrate into the trunk. In this case, the hand position
is adjusted to a position where such penetration does not , |v| — v, .
happen_ P =P + —dforward ('Lf |V| > Uth) (10)

Vs

wherewy,, vs are the threshold and scaling parameters. We
tuned those parameters empirically. In our implementation,
we usevy, = 1.0 andv, = 0.2.

3) Translation for Self-collision AvoidanceFinally, the
end-effector is moved in the same perpendicular direction to
avoid self-collision.

The distances between the controlled end-effector and
other body parts are computed. If the distance is below a
threshold, the position is adjusted using the similar equation
to equation (10).

Figure 7. Touch interpretation for the pelvis.

p/ =p+ kdforward (11)
In this case, the scaling parameteis computed based on input is interpreted as moving motion (step) and the target
the distance and the threshold. position is computed.

For collision detection and distance computation between The target positionp,,.,. iS computed by computing
body segments, any existing method can be used. Thine crossing point of the viewing vector with the plane
method for representing the shapes of body segments tbat is parallel to the ground and crosses the pelvis of the
also flexible. A simplified representation such as a boundingharacter. To keep the step distance within a reasonable
box or ellipsoid makes distance computation easier. Irrange, the distance betweegn,,,. and the current pelvis
our implementation, we represented each body part as gposition is limited within a specific range (0.5m 0.8m in
oriented bounding box [23]. our implementation). Note that up-down touch movement on

) the screen controls front-back step direction.
B. Rotation of Trunk and Head

Because we use the rotations of the trunk and head in VI. MoTION CONTROL MODEL

our point-based pose representation, we interpreted the touch

and drag of a point on a body part as their rotation. In this section, we describe our motion control model that

The translation of the touched point of the trunk or headdetermine_s the O_UtpUt POF&u1pt Dased on the constraints
s computed the same way as the computation for peigtC T TR BN TR RSO R o
translationpgouched. The touched point on Fhe body depends o resentatiog described%n Section IV P P
on the point where the user touches first. Based on thEEP)

translation of the touched point, the trunk rotation that Our motion control model includes several modules and
satisfies it is computedqyyuni as follows each of them determines an output pose. The output pose is
Tunk .

computed by blending the results of all modules.

(p;ouched - pback) = Aqtrunk (ptouched - pback) (12) Poutput — (Z Wi Pz) (13)
w;

where pioucheq 1S the initial position of the touched point 2
without trunk rotation ancby..i is the back joint position. whereP;, w; are the output pose and weight of each control
Because the touched point is on the surface of the charactergodule andi = tracking, balance, interbody_ interaction,
body, when the touched body is moved downward on théelaxing and selfcollision_avoidance Note that all modules
screen, the character bends forward, and when the touché&gay not determine all parameters. For example, when there
body is moved upward on the screen, it bends backward. is no user input, the tracking control does not produce its
output pose and weight. High priority is given to tracking,
C. Execution of Moving Motion balance and self collision avoidance while low priority is
As explained in Section Ill, when the pelvis is moved given to inter body interaction and relaxing.
over a large distance, this is interpreted as moving in a step The concepts behind our each control module are not new.
and the target position is computed. We designed these models based on our intermediate point-
Figure 7 shows the touch interpretation for the pelvis.based pose representation. Our models directly change po-
The horizontal movement of the pelvis is limited within sitions and orientation rather than using physics simulation.
the support polygon computed from foot positions (seeWe introduced simple approximations and parameters for
Section VI-B). Vertical movement of the pelvis is limited these modules. We argue that our framework is very simple
by leg length and minimum duck height. When the pelvisand easy to implement, but also powerful and flexible.
is moved within this range, the input is interpreted as pelvis In the remainder of this section, we briefly describe our
translation. When the pelvis is moved outside this range, thapproach for implementing each controller.

A. Tracking Control D. Relaxing Control

Tracking control is for satisfying input constraints from Relaxing control is for moving the body parts to the

the multi-touch interface. The output of the tracking control"€St pose when there is no user input. We introduced this
module Pyyqcking USES iNput constraints aBy,qcking = module because it looks unnatural if the character stops in

Pinput- an unnatural pose. This module keeps the trunk vertical,

When an end-effector (hand or foot) is controlled by theloWers arms and legs, and maintains the head elevation
user and the target position is within the reachable range ofithin certain limits.
the limb, only the end-effector position is changed. Howeverg - ggli-Collision Avoidance Control
when the target position is outside of the reachable range, Self-collision avoidance requires care because we cannot
the pelvis and the trunk should be moved to reach the targtit q

position. In such case, the pelvis positipp.;,;s and the now 'I Zelfl-_tr:]ollls}lon wil (_)ctcu_r untllt thte output pose 'St q
trunk orientationq,,....r, are changed accordingly. computed. Theretore, an interim output pose 1S compute
. . : without self-collision avoidance. If there is any self-collision,
Also, while an end-effector (foot) is contacting the

ground, tracking control keeps the current foot position. this control is then applied repeatedly until on self-collision
problem exists.

B. Balance Control F. Step Motion Control

Balance control maintains the balance of the character, WNen a step is executed and its target position is sent
Our balance control module controls pelvis position andfrom the interface module, the motion control generates a

trunk orientation to keep the projection of the center of mas$t€P motion. In our implementation, we used a similar model
of the character within its support polygon. to that to that used by [24]. During action control, the pelvis

The translation of the upper body (position of the pelvis)and feet are controlled based on a procedural action model.

Appeivis and the rotation of the upper body (orientation of Thi. full b?[dyl fmo'uon 'Sk automatically generated by our
the trunk)Aqy,-.nx are computed to move the center of mass'oHON control framework.

within the support polygom\p.,,,, when it is found to be VIl. RESULTS AND DISCUSSION

outside the support polygon. We have implemented our interface and tested it. Some

of the resulting motions are shown in Figure 1 and the
MAPpeivis = Wpelvis APcom (14) accompanying video. Various simple actions such as posing,
reaching, stepping, gestures (nodding, pointing, waving),

MAGtrank X (Perunk — Poack) = WirunkAPeom (15) fighting actions (punch, kick) and combinations can be

created by using our interface. As explained in Section |,
where M is the total mass of upper body. The required€ven though our method can take multi-touch inputs, it is
translation of the center of masAp... is distributed difficult for a user to control many parts simultaneously.
to the translation of the pe|vis pOSitioppeluis and the Based on our eXperimentS, we found that USing one to three
orientation of the trunkqy,..,.». with a specific ratiow,c;yis touches at the same time is enough when performing typical
D Wirunk = Wpelvis_trunk_ratio © 1 — Wpelvis_trunk_ratio- 1N actions. Each action typically has one primary limb (e.g. an
our implementation, We US@pcivis_trunk_ratio = 0.5. arm for punch). One touch can be used to control its end-
effector. Also, one touch can be used to control the body
(pelvis and/or trunk). The rest of the body is driven by our
motion control model.

This control is for simulating the physical interface be- Using our interface, the user can make his or her avatar
tween connected body parts. When a person moves his @erform their own actions. This will be useful in many
her body part (e.g. an arm), any connected body part (e.Ggpplications such as communication in virtual environments
trunk) also moves a little even if he or she tries to keep it stillusing avatars or fighting games. Conversely, performing all
because there is physical influence between the connectenotions using our interface may not be realistic. Making
body parts. a combination of our interface and conventional interfaces

This module controls trunk orientation based on theavailable and allowing users to choose may be a more
velocities of end-effectors and the positions of end-effectorgractical option.
based on the velocity of the trunk. Because it is difficult There are limitations in our interface. Control is focused
to simulate this kind of effect accurately even with physicson the pose of a standing character and performing moving
simulation, because it also requires realistic muscle stiffnessotions other than stepping was not considered in this
models, we chose to scale the velocities of connected bodyaper. There are existing methods for such movement control
parts. [9][10] and our system can be integrated with these.

C. Inter-Body Interaction Control

Because of the constraints of using inputs on a 2-[9] S. I. Park, H. J. Shin, and S. Y. Shin, “On-line locomotion
dimensional screen, it is not possible to control which
direction the character is facing, because the touch inputs are

interpreted as translation or tilt of the controlled body partsj; g

and rotation is not considered. It may be possible to extend
our system to include different methods of interpretation or
to make it possible to switch between different interfaces.
However, such extension makes the interface more compliy |
cated. Seeking a balance between freedom of control and
usability is an important area for future research. Although

our motion control model takes physics into account, it is[1

not driven by physics simulation and may not always be
physically correct. For example, pose and motion is limited
so that the character never falls. We believe hat this is a

reasonable constraint, but a user may want the character &3l

perform a falling motion.

VIII. CONCLUSION

(14]

In this paper, we proposed a framework for controlling
a character using a multi-touch interface. Although our

framework is very simple, various kinds of motions can be
realized using our interface without using any examples. Ou

151

interface is easy to implement and can be used by many
tablet computers.

(1]

(2]

[16]
REFERENCES
K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popoyi
“Style-based inverse kinematicsACM Transactions on [17]

Graphics vol. 23, no. 3, pp. 522-531, 2004.

M. Oshita, “Multi-touch interface for character motion control
using example-based posture synthesislhternational Con-

ference on Computer Graphics, Visualization and Computer18g]

Vision (WSCG) 20122012, pp. 213-222.

[3] T. Jakobsen, “Advanced character physics,Pimceedings of
Game Developer’s Conference 20@DO01.

[4] Z. Popovt and A. Witkin, “Physically based motion trans-
formation,” in SIGGRAPH 19991999, pp. 11-20.

[5] R. Kulpa, F. Multon, and B. Arnaldi, “Morphology-

(19]

(20]

independent representation of motions for interactive human-

like animation,” Computer Graphics Forum (Eurographics
2005) vol. 24, no. 3, pp. 343-352, 2005.
[6] M. Neff and Y. Kim, “Interactive editing of motion style using
drives and correlations,” ifcurographics/ACM SIGGRAPH
Symposium on Computer Animation 20@®09, pp. 103—
112.

(7]
B. Walther-Franks, “Multitouch motion capturing,” iACM

M. Krause, M. Herrlich, L. Schwarten, J. Teichert, and

(22]

International Conference on Interactive Tabletops and sur-[23]

faces 20082008, p. 2.

[8] M. Kipp and Q. Nguyen, “Multitouch puppetry: Creating

coordinated 3d motion for an articulated arm,” ACM In-

(24]

ternational Conference on Interactive Tabletops and Surfaces

201Q 2010, pp. 147-156.

generation based on motion blending,” A€M SIGGRAPH
Symposium on Computer Animation 202202, pp. 105-111.

M. Thorne, D. Burke, and M. van de Panne, “Motion doodles:
An interface for sketching character motiolACM Trans-
actions of Graphics (SIGGRAPH 2004)l. 23, no. 3, pp.
424-431, 2004.

M. Oshita, “Motion control with strokes,Computer Anima-
tion and Virtual Worlds vol. 16, no. 3-4, pp. 237-244, 2005.

2] T.lgarashi, T. Moscovich, and J. F. Hughes, “Spatial keyfram-

ing for performance-driven animation,” iACM SIGGRAPH
/ Eurographics Symposium on Computer Animation 2005
2005, pp. 253-258.

M. Dontcheva, G. Yngve, and Z. Popayi‘Layerd acting for
character animation,” irlSIGGRAPH 20032003, pp. 409—-
416.

B. L. Callennec and R. Boulic, “Interactive motion deforma-
tion with prioritized constraints,Graphical Models vol. 68,
no. 2, pp. 175-193, 2006.

J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O'Brien,
“Animating human athletes,” IrSIGGRAPH '95 1995, pp.
71-78.

P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Com-
posable controllers for physics-based character animation,” in
SIGGRAPH 20012001, pp. 251-260.

C. K. Liu and Z. Popow, “Synthesis of complex dynamic
character motion from simple animation&CM Transactions
on Graphics (SIGGRAPH 2002)ol. 21, no. 3, pp. 408-416,
2002.

S. Jain, Y. Ye, and C. K. Liu, “Optimization-based interactive
motion synthesis,ACM Transactions on Graphicyol. 28,
no. 1, p. Article No. 10, 2009.

A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum
control for balance,”ACM Transactions of Graphics (SIG-
GRAPH 2009)vol. 28, no. 3, p. Article No. 80, 2009.

G. Monheit and N. I. Badler, “A kinematic model of the
human spine and torsolEEE Computer Graphics and Ap-
plications vol. 11, no. 2, pp. 29-38, 1991.

D. Tolani, A. Goswami, and N. |. Badler, “Real-time inverse
kinematics techniques for anthropomorphic liml&Sraphical
Models and Image Processingol. 62, no. 5, pp. 353-388,
2000.

S. Yonemoto, D. Arita, and R. ichiro Taniguchi, “Real-time
human motion analysis and ik-based human figure control,”
in Workshop on Human Motion 2002000, pp. 149-154.

S. Gottschalk, M. Lin, and D. Manocha, “Obbtree: A hier-
archical structure for rapid interference detection,”SiG-
GRAPH '96 1996, pp. 171-180.

C.-C. Wu, J. Medina, and V. B. Zordan, “Simple steps
for simply stepping,” ininternational Symposium on Visual
Computing (ISVC) 2008008, pp. 97-106.

